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Background Results: Static K and p Conclusions

= Sets of oscillators tend to synchronize when = Order parameter at 1000 steps recorded for each (K, p). = For static coupling K and connectivity p:
coupled in some manner. * 500 Oscillators, Results averaged over 10 trials = Sigmoidal relationship between synchronization ability and

= Oscilators modeled by initial frequency w; and current 1 — network connectivity p for each coupling K.

h 9. (t). <o
phase 6;(t) 0.9 K=0.3 = For time varying coupling K(t) and static connectivity p:

K=0.4

= Kuramoto Model: K =0, . . .
0.8 K06 = Hysteresis increases or decreases with p depending on

= All N oscillators coupled to all others with strength K. =0 the choice of coupling function K (t).

K =0.8
0.7 K =0.9

= Change of phase 6, depende on difference in current N K = = Connectivity is not a hysteresis operator on r depending
phase of all other oscrllators _ on K and initial state: heavily rate dependent.

d@ Tfin
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= Synchrony often measured usmg order parameter T o hy does hysteresis occur?

r(t) = |— Z 00| \ \ . nat determines the size of this hysteresis effect?
r. L : ny does hysteresis grow/shrink with connectivity?
* Kuramoto Model on Graphs B = What property of K (t) determines the direction?

= Arbitrary couplings defined through graph ¢ = (V, E). | | | | | - - - - = Verify results for other constructions of connected graphs.
= IV is the set of oscillators.

= FE is the set of couplings between oscillators.

= Change of phase 6; depends on phase of neighbors: ResultS: Tlme Varylng K(t)) Statlc p
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N . - -
do; i+ Z Kay,;sin(f; — 0,) = Synchrony r(t) measured over time = Hysteresis effect seen as E[r(t)] is plotted | = Shown: K; referenced in hysteresis

dt while the coupling K;(t) is varied. as a function of K;(t). [E is over 100 trials] table below

= Shown: r(t) range over 100 trials for 500 [= Shown: E[r(¢)](K) 500 oscillators at p = 0.50

— (03, 3) /<95»w5> oscillators at p = 0.50 with K; - a with triangular K;.
Crol (0, o)™ (00 02) triangular function.
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= Order parameter r only for connected graphs sl

= We only consider networks with adjacency matrix A

such that: ex: N = 50 03| | . 3t ; : : : 0.75 1.00
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= |Level of graph connectivity varied by p. " == "m 0.047 . 0.242

= |nitial conditions for solving IVP: = Hysteresis effect for each (p, K;) quantified by numerically finding the area between
the two curves. K; given by figure above table. 50 Oscillators with E[r] on 100 trials.

o 0.028 0. 0.035
= Normally distributed frequencies {w;} ~ N (0,0.1)

= Uniformly distributed initial phase {6;(0)} '~ Unif(0, 27) = All K; bijective and monotonic increasing/decreasing on (0, g) / (g, T) respectively, with 0.128 - 0.116

* Runge - Kutta 4'" order ODE solver, dt = 0.1 boundary values ||K;|| = g K;(0) = K;(T) = 0, K; (g) =1. Highlighted: highest (red) in row.
Values normalized by number of steps T.




