Voice Activity Detection with Teacher-Student Domain Emulation Jarrod Luckenbaugh, Samuel Abplanalp, Rachel Gonzalez, Daniel Fulford, David Gard, Carlos Busso

Multimodal Signal Processing Laboratory

Background

Voice Activity Detection (VAD) :

- **Distinguishes between speech and noise**
- Important first step for using speech data
- Good performance on clean audio
- **NOT** perfect: struggles with speaker distance and very loud, dynamic noise

Our Work:

- Deep learning based VAD technique
- Usage motivated by advances in automatic speech recognition (ASR)
- Domain adaption scales lab conditions to the real world for a medical application

- Right: Laboratory environment
- **Proposed implementations:**
- LSTM best for shorter, prompted aud
- CS-Hopfield best for long, ambient audio

THE UNIVERSITY OF TEXAS AT DALLAS

Study supported by the NIH under grant 1R01MH122367-01

Target Domain (TD)

Social sensing with Digital Phenotyping:

- Uses datastreams from a patient's smartphone to make psychiatric assessments
- Seek to assess social isolation for those with schizophrenia spectrum disorders (SZ)

- **Data Collection:**
- 2 groups: SZ and healthy controls (HC)
- 2 weeks: carried a phone with our program
- We gather ambient audio and spoken responses from prompted questions

Previous work: voice activity detected tends to increase with number of social interactions

	Test	White 0dB		Babble 0dB		CHIME5 0dB		
	Train	Τ	S	Т	S	T	S	
	CRSS-4English14	0.992	0.970	0.992	0.988	0.992	0.985	
	+ White 0dB	0.870	0.960	0.859	0.799	0.870	0.695	
	+ White 10dB	0.951	0.975	0.951	0.945	0.951	0.915	
	+ Babble 0dB	0.434	0.248	0.390	0.465	0.434	0.353	
	+ Babble 10dB	0.796	0.587	0.769	0.810	0.796	0.709	
1	+ CHiME5 0dB	0.897	0.845	0.889	0.957	0.897	0.958	
or	+ CHiME5 10dB	0.957	0.919	0.956	0.984	0.957	0.981	
ch	+ TD Noise 0dB	0.889	0.777	0.884	0.955	0.889	0.919	
audio	+ TD Noise 10dB	0.962	0.868	0.964	0.980	0.962	0.962	
lings	 Method improves performance when added training noise match that of test condition Decreases otherwise. Also depends on noise power 							
dio	Babble and CHiN	Sabble and CHiME5 noises are similar to TD noises						

Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas, Richardson, Texas - 75080, USA

Teacher Student Learning

- performance

Our Method:

VAD Performance / Transfer Analysis

les

Usage likely to improve performance in the target domain

- Model **T-S BLSTN T-S BLSTN T-S BLSTM**
- Conclusions

Multimodal Signal Processing Lab (MSP)

Teacher Student Domain Emulation

	Test	Without T-S	With T-S
1	CRSS-4English14	0.989	0.990
1	TD-EMA	0.868	0.875
1	TD-Ambient	0.750	0.766

Ablation study: Student trained without teacher vs with teacher

Method Improves performance on all test sets

Model agnostic, feature agnostic, teacher-

- student domain adaptation framework for
- training a VAD model

Improves performance most with

unconstrained recording conditions

Teacher-student domain embedding

minimization is a complementary task to VAD